Referências da Revista Essentia 14a Edição

FITOQUÍMICOS
A riqueza medicinal da natureza na nutrição

Refêrencias
  • 1. Bo Song a, et al. Lycopene and risk of cardiovascular diseases: A meta-analysis of observational studies. 2017; doi:10.1002/mnfr.201601009.
  • 2. Madhava Reddy A, et al. Lycopene and it ’ s importance in treating various diseases in humans. 2011.
  • 3. Nelson KM, et al. The Essential Medicinal Chemistry of Curcumin. 2017. doi:10.1021/acs.jmedchem.6b00975.
  • 4. He Y, et al. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules. 2015; doi:10.3390/molecules20059183.
  • 5. Fadus MC, et al. Journal of Traditional and Complementary Medicine Curcumin : An age-old anti-in fl ammatory and anti-neoplastic agent. J Tradit Chinese Med Sci. 2017; doi:10.1016/j.jtcme.2016.08.002.
  • 6. Health H, et al. Cranberries and Their Bioactive Constituents. 2013; doi:10.3945/an.113.004473.618.
  • 7. Rahman I, et al. Regulation of inflammation and redox signaling by dietary polyphenols. 2006; doi:10.1016/j.bcp.2006.07.004.
  • 8. Akhtar H, et al. Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. 2013; doi:10.3390/nu5041169.
  • 9. Liu R, et al. Lutein and Zeaxanthin Supplementation and Association With Visual Function in Age-Related Macular Degeneration. 2017; doi:10.1167/iovs.14-15553.
  • 10. Original A. Efeitos Benéficos do Açaí. 2012.
  • 11. Mazimba O, et al. Cinnamomum verum : Ethylacetate and methanol extracts antioxidant and antimicrobial activity. 2015.
  • 12. Ranjbar A, et al. Antioxidative stress potential of Cinnamomum zeylanicum in humans : a comparative cross-sectional clinical study. 2006; doi:10.1586/14750708.3.1.113.
  • 13. Prakash D, et al. The Antioxidant Phytochemicals of Nutraceutical Importance. 2009.
  • 14. Taylor P, et al. Dietary Polyphenols and the Prevention of Diseases Dietary Polyphenols and. 2013; doi:10.1080/1040869059096.
  • 15. Rodriguez A, et al. Bioavailability , bioactivity and impact on health of dietary flavonoids and related compounds: an update. 2014; doi:10.1007/s00204-014-1330-7.
  • 16. Medicine I. Phytonutrients as therapeutic agents. 2014; doi:10.1515/jcim-2013-0021.
  • 17. Barbosa KBF, et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr. 2010; doi:10.1590/S1415-52732010000400013.
  • 18. Halliwell B, et al. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004; doi:10.1038/sj.bjp.0705776.
  • 19. Ferreira ALA, et al. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Assoc Med Bras. 1997; doi:10.1590/S0104- 42301997000100014.
  • 20. Bianchi M de LP, et al. Radicais livres e os principais antioxidantes da dieta. Rev Nutr. 1999; doi:10.1590/S1415-52731999000200001.
  • 21. Green K, et al. Prevention of Mitochondrial Oxidative Damage as a Therapeutic Strategy in Diabetes. Diabetes. 2004; doi:10.2337/diabetes.53.2007.S110.
  • 22. Ferrari CKB. Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology. 2004; doi:10.1007/s10522-004-2566-z.
  • 23. Furukawa S, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; doi:10.1172/JCI200421625.
  • 24. Mayne ST. Antioxidant nutrients and chronic disease: Use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr. 2003.
  • 25. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care.
    2011; doi:10.1097/MCO.0b013e32834121b1.
  • 26. Xia L, et al. Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br J Pharmacol.
    2008; doi:10.1038/bjp.2008.272.
  • 27. Wang XB, et al. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin Med J. 2011.
  • 28. Joel B. Berletch, et al. Epigenetic and Genetic Mechanisms Contribute to Telomerase Inhibition by EGCG. J Cell Biochem. 2008.
  • 29. Guaadaoui A, et al. What is a bioactive compound? A combined definition for a preliminary consensus. 2014; doi:10.11648/j.ijnfs.20140303.16.
  • 30. Gil A. A Systematic Review of the Efficacy of Bioactive Compounds in Cardiovascular Disease: Carbohydrates , Active Lipids and Nitrogen Compounds. 2015;
    doi:10.1159/000430960.
  • 31. Academy TN. The Norwegian Academy of Science and Letters Bioactive Compounds in Plants – Benefits and Risks for Man and Animals Proceedings from a Symposium Held at.; 2010.
  • 32. Oliveira L de L de, et al. Health promoting and sensory properties of phenolic compounds in food. Rev Ceres. 2014; doi:10.1590/0034-737×201461000002.
  • 33. Skrovankova S, et al. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int J Mol Sci. 2015; doi:10.3390/ijms161024673.
  • 34. Miyake S, et al. Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: cellular and molecular mechanism. Lab Investig. 2012; doi:10.1038/labinvest.2011.132.
  • 35. Nakaishi H, et al. Effects of black currant anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern Med Rev. 2000.
  • 36. Meiers S, et al. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J Agric Food Chem. 2001.
  • 37. Kang S-Y, et al. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett. 2003; doi:10.1016/S0304-3940(02)00583-9.
  • 38. Hou DX. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr Mol Med. 2003.
  • 39. F. E. KandilL, et al. Isolation of oligomeric proanthocyanidins from flavonoid-producing cell cultures. Vitr Cell Dev Biol. 2000.
  • 40. Smith MAL, et al. Bioactive Properties of Wild Blueberry Fruits. J Food Sci. 2000; doi:10.1111/j.1365-2621.2000.tb16006.x.
  • 41. Lila MA. Anthocyanins and Human Health: An In Vitro Investigative Approach. J Biomed Biotechnol. 2004; doi:10.1155/S111072430440401X.
  • 42. Folts J. Antithrombotic Potential of Grape Juice and Red Wine for Preventing Heart Attacks. Pharm Biol. 1998; doi:10.1076/phbi.36.6.21.4558.
  • 43. Youdim KA, et al. Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med. 2000.
  • 44. Youdim KA, et al. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults (small star, filled). J Nutr Biochem. 2002.
  • 45. Mink PJ, et al. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr. 2007; doi: 10.1093/ajcn/85.3.895
  • 46. Dohadwala MM, et al. Grapes and Cardiovascular Disease. Clin Res. 2009; doi:10.3945/jn.109.107474.1788S.
  • 47. Johnson SA, et al. Daily Blueberry Consumption Improves Blood Pressure and Arterial Stiffness in Postmenopausal Women with Pre- and Stage 1-Hypertension: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Acad Nutr Diet. 2015; doi:10.1016/j.jand.2014.11.001.
  • 48. Huang W, et al. Effect of Blueberry Anthocyanins Malvidin and Glycosides on the Antioxidant Properties in Endothelial Cells. Oxid Med Cell Longev. 2016; doi:10.1155/2016/1591803.
  • 49. Jankowski A, et al. The effect of anthocyanin dye from grapes on experimental diabetes. Folia Med Cracov. 2000.
  • 50. Mykkänen OT, et al. Wild Blueberries (Vaccinium myrtillus) Alleviate Inflammation and Hypertension Associated with Developing Obesity in Mice Fed with a High-Fat Diet. Müller M, ed. PLoS One. 2014; doi:10.1371/journal.pone.0114790.
  • 51. Borowska EJ, et al. Polyphenol, anthocyanin and resveratrol mass fractions and antioxidant properties of cranberry cultivars. Food Technol Biotechnol. 2009.
  • 52. Caillet S, et al. Antioxidant and antiradical properties of cranberry juice and extracts. Food Res Int. 2011; doi:10.1016/j.foodres.2011.02.019.
  • 53. Duthie SJ, et al. The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur J Nutr. 2006; doi:10.1007/s00394-005-0572-9.
  • 54. Health H, et al. Cranberries and Their Bioactive Constituents. Adv Nutr. 2013; doi:10.3945/an.113.004473.618.
  • 55. Leusink GJ, et al. Retention of Antioxidant Capacity of Vacuum Microwave Dried Cranberry. J Food Sci. 2010; doi:10.1111/j.1750-3841.2010.01563.x.
  • 56. Pedersen C, et al. Effects of blueberry and cranberry juice consumption on the plasma antioxidant capacity of healthy female volunteers. Eur J Clin Nutr. 2000; doi:10.1038/sj.ejcn.1600972.
  • 57. Baranowska M, et al. Antioxidant and antimicrobial properties of bioactive phytochemicals from cranberry. Postepy Hig Med Dosw. 2016; doi:10.5604/17322693.1227896.
  • 58. Basu A, et al. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res. 2011; doi:10.1016/j.nutres.2011.02.003.
  • 59. Mathison BD, et al. Consumption of cranberry beverage improved endogenous antioxidant status and protected against bacteria adhesion in healthy humans: a randomized controlled trial. Nutr Res. 2014; doi:10.1016/j.nutres.2014.03.006.
  • 60. Amensour M, et al. Antioxidant activity and total phenolic compounds of myrtle extracts. CyTA – J Food. 2010; doi:10.1080/19476330903161335.
  • 61. Bowtell JL, et al. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab. 2017; doi:10.1139/apnm-2016-0550.
  • 62. Souza, MO, et al. Açaí (Euterpe oleraceae Martius): composição química e bioatividades Açaí (Euterpe oleraceae Martius): chemical composition and bioactivity. Nutrire. 2011.
  • 63. Menezes EM da S, et al. Valor nutricional da polpa de açaí (Euterpe oleracea Mart) liofilizada. Acta Amaz. 2008; doi:10.1590/S0044-59672008000200014.
  • 64. Irc B. Assessment of the scientific evidence of the potential use of açaí (Euterpe oleracea, Mart.) in clinical outcomes: analysis with focus on antioxidant and anti- inflammatory action. Int J Nutrology. 2014.
  • 65. Rufino M do SM, et al. Açaí (Euterpe oleraceae) “BRS Pará”: A tropical fruit source of antioxidant dietary fiber and high antioxidant capacity oil. Food Res Int. 2011; doi:10.1016/j.foodres.2010.09.011.
  • 66. Gonçalves GMS, et al. Antioxidant and antimicrobial activities of propolis and açai (Euterpe oleracea Mart) extracts. Rev Ciênc Farm Básica Apl. 2011.
  • 67. Tonon R V., et al. Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res Int. 2010; doi:10.1016/j.foodres.2009.12.013.
  • 68. Horiguchi T, et al. Inhibitory Effect of Açaí (Euterpe oleracea Mart.) Pulp on IgE- Mediated Mast Cell Activation. J Agric Food Chem. 2011; doi:10.1021/jf2005707.
  • 69. Fragoso MF, et al. Inhibition of Mouse Urinary Bladder Carcinogenesis by Açai Fruit (Euterpe oleraceae Martius) Intake. Plant Foods Hum Nutr. 2012; doi:10.1007/s11130-012-0308-y.
  • 70. Udani JK, et al. Effects of Açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study. Nutr J. 2011; doi:10.1186/1475-2891-10-45.
  • 71. Lichtenthäler R, et al. Total oxidant scavenging capacities of Euterpe oleracea Mart. (Açaí) fruits. Int J Food Sci Nutr. 2005; doi:10.1080/09637480500082082.
  • 72. Schauss AG, et al. Antioxidant Capacity and Other Bioactivities of the Freeze-Dried Amazonian Palm Berry, Euterpe oleraceae Mart. (Acai). J Agric Food Chem. 2006; doi:10.1021/jf0609779.
  • 73. Chauss ALGS, et al. Phytochemical and Nutrient Composition of the Freeze-Dried Amazonian Palm Berry , Euterpe oleraceae Mart . (Acai). 2006.
  • 74. Rocha APM, et al. Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (Açaí) extracts in mesenteric vascular bed of the rat. Vascul Pharmacol. 2007; doi:10.1016/j.vph.2006.08.411.
  • 75. Hassimotto NMA, et al. Antioxidant Activity of Dietary Fruits, Vegetables, and Commercial Frozen Fruit Pulps. J Agric Food Chem. 2005; doi:10.1021/jf047894h.
  • 76. Proteggente AR, et al. The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects their Phenolic and Vitamin C Composition. Free Radic Res. 2002; doi:10.1080/10715760290006484.
  • 77. Xie C, et al. Açaí juice attenuates atherosclerosis in ApoE deficient mice through antioxidant and anti-inflammatory activities. Atherosclerosis. 2011; doi:10.1016/j.atherosclerosis.2011.02.035.
  • 78. Carl L Keen, et al. Cocoa antioxidants and cardiovascular health. Am Soc Clin Nutr. May 2005.
  • 79. Bearden MM, et al. Potential Cardiovascular Health Benefits of Procyanidins Present in Chocolate and Cocoa. In: ACS Symposium Series. 2000; doi:10.1021/bk-2000-0754.ch019.
  • 80. Maleyki MJA, et al. Antioxidant properties of cocoa powder. J Food Biochem. 2010; doi:10.1111/j.1745-4514.2009.00268.x.
  • 81. Katz DL, et al. Cocoa and Chocolate in Human Health and Disease. Antioxid Redox Signal. 2011; doi:10.1089/ars.2010.3697.
  • 82. Crozier SJ, et al. Cacao seeds are a “Super Fruit”: A comparative analysis of various fruit powders and products. Chem Cent J. 2011; doi:10.1186/1752-153X-5-5.
  • 83. Wan Y, et al. Effects of cocoa powder and dark chocolate on LDL oxidative susceptibility and prostaglandin concentrations in humans. Am J Clin Nutr. 2001.
  • 84. Osakabe N, et al. Daily cocoa intake reduces the susceptibility of low-density lipoprotein to oxidation as demonstrated in healthy human volunteers. Free Radic Res. 2001; doi:10.1080/10715760100300091.
  • 85. Wang JF, et al. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J Nutr. 2000.
  • 86. Hayek N. Chocolate, gut microbiota, and human health. Front Pharmacol. 2013; doi:10.3389/fphar.2013.00011.
  • 87. Cardona F, et al. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013; doi:10.1016/j.jnutbio.2013.05.001.
  • 88. De Oliveira VPS, et al. Dark polyphenols-rich chocolate and gut microbiota: a literature review. DEMETRA Aliment Nutr Saúde. 2017; doi:10.12957/demetra.2017.25475.
  • 89. Esser D, et al. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men. FASEB J. 2014; doi:10.1096/fj.13-239384.
  • 90. Ozdal T, et al. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients. 2016; doi:10.3390/nu8020078.
  • 91. Singh RK, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017; doi:10.1186/s12967-017-1175-y.
  • 92. Valdés L, et al. The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct. 2015; doi:10.1039/C5FO00322A.
  • 93. Lamport DJ, et al. The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: a placebo controlled, crossover, acute trial. Psychopharmacology (Berl). 2015; doi:10.1007/s00213-015-3972-4.
  • 94. Lu T, et al. Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutr Res. 2012; doi:10.1016/j.nutres.2012.05.003.
  • 95. Crawford P. Effectiveness of Cinnamon for Lowering Hemoglobin A1C in Patients with Type 2 Diabetes: A Randomized, Controlled Trial. J Am Board Fam Med. 2009; doi:10.3122/jabfm.2009.05.080093.
  • 96. Anderson RA, et al. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J Tradit Complement Med. 2016; doi:10.1016/j.jtcme.2015.03.005.
  • 97. Mancini-Filho J, et al. Antioxidant activity of cinnamon (Cinnamomum Zeylanicum, Breyne) extracts. Boll Chim Farm. 1998.
  • 98. Rao PV, et al. Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complement Altern Med. 2014; doi:10.1155/2014/642942.
  • 99. Mathew S, et al. Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem. 2006; doi:10.1016/j.foodchem.2004.11.043.
  • 100. Roussel A-M, et al. Antioxidant Effects of a Cinnamon Extract in People with Impaired Fasting Glucose That Are Overweight or Obese. J Am Coll Nutr. 2009; doi:10.1080/07315724.2009.10719756.
  • 101. Anderson RA. Chromium and polyphenols from cinnamon improve insulin sensitivity. Proc Nutr Soc. 2008; doi:10.1017/S0029665108006010.
  • 102. Qin B, et al. Cinnamon: Potential Role in the Prevention of Insulin Resistance, Metabolic Syndrome, and Type 2 Diabetes. J Diabetes Sci Technol. 2010; doi:10.1177/193229681000400324.
  • 103. Peterson DW, et al. Cinnamon Extract Inhibits Tau Aggregation Associated with Alzheimer’s Disease In Vitro. J Alzheimer’s Dis. 2009; doi:10.3233/JAD-2009-1083.
  • 104. Anderson RA, et al. Cinnamon Counteracts the Negative Effects of a High Fat/High Fructose Diet on Behavior, Brain Insulin Signaling and Alzheimer-Associated Changes. Bassaganya-Riera J, ed. PLoS One. 2013; doi:10.1371/journal.pone.0083243.
  • 105. Lu J, et al. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling. Carcinogenesis. 2010; doi:10.1093/carcin/bgp292.
  • 106. Schoene NW, et al. Water-soluble polymeric polyphenols from cinnamon inhibit proliferation and alter cell cycle distribution patterns of hematologic tumor cell lines. Cancer Lett. 2005; doi:10.1016/j.canlet.2004.12.039.
  • 107. Gupta C, et al. Comparative study of cinnamon oil and clove oil on some oral microbiota. Acta Biomed. 2011.
  • 108. Kwan HY, et al. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep. 2017; doi:10.1038/s41598-017-02263-5.
  • 109. Jiang J, et al. Cinnamaldehyde induces fat cell-autonomous thermogenesis and metabolic reprogramming. Metabolism. 2017; doi:10.1016/j.metabol.2017.08.006.
  • 110. Gruenwald J, et al. Cinnamon and Health. Crit Rev Food Sci Nutr. 2010; doi:10.1080/10408390902773052.
  • 111. Min Zhu, et al. Short-term germ-killing effect of sugar-sweetened cinnamon chewing gum on salivary anaerobes associated with halitosis. J Clin Dent. 2011.
  • 112. Koh W., et al. Cinnamaldehyde inhibits lymphocyte proliferation and modulates T-cell differentiation. Int J Immunopharmacol. 1998; doi:10.1016/S0192-0561(98)00064-2.
  • 113. Ka H, et al. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett. 2003; doi:10.1016/S0304-3835(03)00238-6.
  • 114. George, et al. Interaction of Cinnamaldehyde and Epicatechin with Tau: Implications of Beneficial Effects in Modulating Alzheimer’s Disease Pathogenesis. J Alzheimer’s Dis. 2013. doi:10.3233/JAD-122113.
  • 115. Baranowska M, et al. Antioxidant and antimicrobial properties of bioactive phytochemicals from cranberry. Postepy Hig Med Dosw. 2016; doi:10.5604/17322693.1227896
  • 116. Mathison BD, et al. Consumption of cranberry beverage improved endogenous antioxidant status and protected against bacteria adhesion in healthy humans: a randomized controlled trial. Nutr Res. 2014; doi:10.1016/j.nutres.2014.03.006
  • 117. Cunningham DG, et al. Cranberry Phytochemicals and Their Health Benefits. ACS Symposium Series . 2003; doi: 10.1021/bk-2004-0871.ch004
  • 118. Martini D, et al. Coffee Consumption and Oxidative Stress: A Review of Human Intervention Studies. Molecules. 2016; doi:10.3390/molecules21080979.
  • 119. Ludwig IA, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014; doi:10.1039/C4FO00290C.
  • 120. Farah A, et al. Chlorogenic Acids from Green Coffee Extract are Highly Bioavailable in Humans. J Nutr. 2008; doi:10.3945/jn.108.095554.
  • 121. Jeszka-Skowron M, et al. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur Food Res Technol. 2016; doi:10.1007/s00217-016-2643-y.
  • 122. Godos J, et al. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int J Food Sci Nutr. 2014; doi:10.3109/09637486.2014.940287.
  • 123. Tajik N, et al. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr. 2017; doi:10.1007/s00394-017-1379-1.
  • 124. Ramirez M. Why lutein is important for the eye and the brain. OCL. 2016; doi:10.1051/ocl/2015027.
  • 125. Cartea ME, et al. Phenolic Compounds in Brassica Vegetables. Molecules. 2010; doi:10.3390/molecules16010251.
  • 126. Eldahshan O a, et al. Lycopene and Lutein; A review for their Chemistry and Medicinal Uses. J Pharmacogn Phytochem. 2013.
  • 127. Kijlstra A, et al. Lutein: More than just a filter for blue light. Prog Retin Eye Res. 2012; doi:10.1016/j.preteyeres.2012.03.002.
  • 128. Ribaya-Mercado JD., et al. Lutein and zeaxanthin and their potential roles in disease prevention. J Am Coll Nutr. 2004.
  • 129. Krinsky NI, et al. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003; doi:10.1146/annurev.nutr.23.011702.073307.
  • 130. Mageney V, et al. A Guide to the Variability of Flavonoids in Brassica oleracea. Molecules. 2017; doi:10.3390/molecules22020252.
  • 131. Zhao X, et al. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women. Am J Clin Nutr. 2006.
  • 132. Anto RJ, et al. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis. 2002.
  • 133. Taraphdar a K, et al. Natural products as inducers of apoptosis:Implication for cancer therapy and prevention. Curr Sci. 2001;80(11):1387-1396.
  • 134. Cui S-X, et al. Curcumin inhibits telomerase activity in human cancer cell lines. Int J Mol Med. 2006.
  • 135. Noorafshan A, et al. A Review of Therapeutic Effects of Curcumin. Curr Pharm Des. 2013; doi:10.2174/138161213805289273
  • 136. Perrone D, et al. Biological and therapeutic activities, and anticancer properties of curcumin. Exp Ther Med. 2015; doi:10.3892/etm.2015.2749
  • 137. Hamam F. Curcumin: New Weapon against Cancer. Food Nutr Sci. 2014; doi:10.4236/fns.2014.522239
  • 138. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern Med Rev. 2009.
  • 139. Savcun GY, et al. Antioxidant and Anti-inflammatory Effects of Curcumin Against Hepatorenal Oxidative Injury in the Experimental Sepsis Model Created in Rats. Turkish J Trauma Emerg Surg. 2013; doi:10.5505/tjtes.2013.76390
  • 140. Akram M, et al. Curcuma longa and curcumin: a review article. Rom J Biol – Plant Biol. 2010.
  • 141. Kim T, et al. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun. 2009; doi:10.1016/j.bbrc.2009.08.018
  • 142. Hatcher H, et al. Curcumin: From ancient medicine to current clinical trials. Cell Mol Life Sci. 2008; doi:10.1007/s00018-008-7452-4
  • 143. Jacob A, et al. Mechanism of the Anti-inflammatory Effect of Curcumin: PPAR-gamma Activation. PPAR Res. 2007; doi:10.1155/2007/89369
  • 144. Shishodia S, et al. Role of Curcumin in Cancer Therapy. Curr Probl Cancer. 2007; doi:10.1016/j.currproblcancer.2007.04.001
  • 145. Ishita C, et al. Turmeric and Curcumin: Biological Actions and Medical Applications (Review). Curr Sci. 2004.
  • 146. Taghizadeh M, et al. The Effect of Dietary Supplements Containing Green Tea, Capsaicin and Ginger Extracts on Weight Loss and Metabolic Profiles in Overweight Women: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Ann Nutr Metab. 2017; doi:10.1159/000471889
  • 147. Golzarand M, et al. Effect of green tea, caffeine and capsaicin supplements on the anthropometric indices: A meta-analysis of randomized clinical trials. J Funct Foods. 2018; doi:10.1016/j.jff.2018.04.002
  • 148. Roy M, et al. Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds. Asian Pac J Cancer Prev. 2002.
  • 149. Taraphdar a K, et al. Natural products as inducers of apoptosis:Implication for cancer therapy and prevention. Curr Sci. 2001.
  • 150. Han S-S, et al. Suppression of phorbol ester-induced NF-kappaB activation by capsaicin in cultured human promyelocytic leukemia cells. Arch Pharm Res. 2002.
  • 151. Mashhadi NS, et al. Anti-Oxidative and Anti-Inflammatory Effects of Ginger in Health and Physical Activity: Review of Current Evidence. Int J Prev Med . 2013.
  • 152. Ernst E, et al. Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials. Br J Anaesth.  2000.
  • 153. Chaiyakunapruk N , et al. The efficacy of ginger for the prevention of postoperative nausea and vomiting: a meta-analysis. Am J Obstet Gynecol.  2006; doi: 10.1016/j.ajog.2005.06.046
  • 154. Pillai AK , et al. Anti-emetic effect of ginger powder versus placebo as an add-on therapy in children and young adults receiving high emetogenic chemotherapy. Pediatr Blood Cancer.  2011; doi: 10.1002/pbc.22778
  • 155. Hu M-L, et al. Effect of ginger on gastric motility and symptoms of functional dyspepsia. World Journal of Gastroenterology : WJG. 2011; doi:10.3748/wjg.v17.i1.105.
  • 156. Wu KL , et al. Effects of ginger on gastric emptying and motility in healthy humans. Eur J Gastroenterol Hepatol.  2008; doi: 10.1097/MEG.0b013e3282f4b224
  • 157. Mashhadi NS, et al. Anti-Oxidative and Anti-Inflammatory Effects of Ginger in Health and Physical Activity: Review of Current Evidence. International Journal of Preventive Medicine. 2013.
  • 158. Michael E. et al. Acute EGCG Supplementation Reverses Endothelial Dysfunction in Patients with Coronary Artery Disease. J Am Coll Nutr. 2007.
  • 159. Potenza MA, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. AJP Endocrinol Metab. 2007; doi:10.1152/ajpendo.00698.2006
  • 160. Davide Grassi, et al. Tea, Flavonoids, and Nitric Oxide-Mediated Vascular Reactivity. J Nutr. 2008.
  • 161. Kim J, et al. Epigallocatechin Gallate, a Green Tea Polyphenol, Mediates NO-dependent Vasodilation Using Signaling Pathways in Vascular Endothelium Requiring Reactive Oxygen Species and Fyn. J Biol Chem. 2007; doi:10.1074/jbc.M609725200
  • 162. Taghizadeh M, et al. The Effect of Dietary Supplements Containing Green Tea, Capsaicin and Ginger Extracts on Weight Loss and Metabolic Profiles in Overweight Women: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Ann Nutr Metab. 2017; doi:10.1159/000471889
  • 163. Golzarand M, et al. Effect of green tea, caffeine and capsaicin supplements on the anthropometric indices: A meta-analysis of randomized clinical trials. J Funct Foods. 2018; doi:10.1016/j.jff.2018.04.002
  • 164. Moritz B, Tramonte VLC. Biodisponibilidade do licopeno. Rev Nutr. 2006; doi:10.1590/S1415-52732006000200013.
  • 165. Giovannucci E. A Prospective Study of Tomato Products, Lycopene, and Prostate Cancer Risk. CancerSpectrum Knowl Environ. 2002; doi:10.1093/jnci/94.5.391.
  • 166. Singh P, et al. Dietary Lycopene: Its Properties and Anticarcinogenic Effects. Compr Rev Food Sci Food Saf. 2008; doi:10.1111/j.1541-4337.2008.00044.x.
  • 167. Soleymaninejad M, et al. The Effects of Lycopene and Insulin on Histological Changes and the Expression Level of Bcl-2 Family Genes in the Hippocampus of Streptozotocin- Induced Diabetic Rats. J Diabetes Res. 2017; doi:10.1155/2017/4650939.
  • 168. Cheng HM, et al. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Crit Rev Food Sci Nutr. 2017; doi:10.1080/10408398.2017.1362630.
  • 169. Basu A, et al. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr. 2007; doi:10.1038/sj.ejcn.1602510.
  • 170. Basuny AM, et al. Tomato lycopene is a natural antioxidant and can alleviate hypercholesterolemia. African J Biotechnol. 2009.
  • 171. Agarwal S, et al. Tomato lycopene and its role in human health and chronic diseases. CMAJ. 2000.
  • 172. Takeoka GR, et al. Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. J Agric Food Chem. 2001; doi:10.1021/jf0102721.
  • 173. Heber D, et al. Overview of Mechanisms of Action of Lycopene. Exp Biol Med. 2002; doi:10.1177/153537020222701013.
  • 174. Bhuvaneswari V, et al. Lycopene: A Review of Its Potential as an Anticancer Agent. Curr Med Chem – Anti-Cancer Agents. 2005.
  • 175. Aghel N, et al. Isolation and quantification of lycopene from: Tomato cultivated in Dezfoul, Iran. Jundishapur J Nat Pharm Prod. 2011.
  • 176. Charles N. I. Effect of Thermal Processing on Lycopene, Beta-Carotene and Vitamin C Content of Tomato [Var.UC82B]. J Food Nutr Sci. 2014; doi:10.11648/j.jfns.20140203.17.
  • 177. Patel SM, et al. The Effect of Dryer Load on Freeze Drying Process Design. J Pharm Sci. 2010; doi:10.1002/jps.22132
  • 178. Barbosa KBF, et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr. 2010; doi:10.1590/S1415-52732010000400013
  • 179. Halliwell B, et al. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004; doi:10.1038/sj.bjp.0705776
  • 180. Braakhuis AJ, et al. Impact of Dietary Antioxidants on Sport Performance: A Review. Sport Med. 2015; doi:10.1007/s40279-015-0323-x
  • 181. Nieman DC, et al. Effect of Four Weeks Ingestion of Tomato-Based Carotenoids on Exercise-Induced Inflammation, Muscle Damage, and Oxidative Stress in Endurance Runners. Int J Sport Nutr Exerc Metab. 2017; doi:10.1123/ijsnem.2017-0272
  • 182. Panza VSP, et al. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008; doi:10.1016/j.nut.2008.01.009
  • 183. Clarkson PM1 TH. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr. 2000.
  • 184. Manfred Lamprecht. Antioxidants in Sport Nutrition.; 2015.
  • 185. Prasad AS, et al. Zinc supplementation decreases incidence of infections in the elderly : effect of zinc on generation of cytokines and oxidative stress 1 – 3. 2007.
  • 186. Halliwell B. Why and how should we measure oxidative DNA damage in nutritional studies ? How far have we come?. 2000.
  • 187. Richard S, et al. Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J Nutr Biochem. 2007; doi:10.1016/j.jnutbio.2006.09.001
  • 188. Yang Song, et al. Zinc Deficiency Affects DNA Damage, Oxidative Stress, Antioxidant Defenses, and DNA Repair in Rats. Am Inst Nutr. 2009; doi:10.3945/​jn.109.106369
  • 189. Powell SR. Zinc and Health: Current Status and Future Directions The Antioxidant Properties of Zinc. 2000.
  • 190. Janeiro R De. Zinco , estresse oxidativo e atividade física Zinc , oxidative stress and physical activity. 2003.
  • 191. Rodrigues M, et al. Estresse Oxidativo e suplementação de antioxidantes na atividade física:Uma revisão sistemática. Rev Mackenzie Educ Física e Esporte. 2013.
  • 192. Rebelatto JR, et al. Antioxidantes, atividade física e estresse oxidativo em mulheres idosas. Rev Bras Med do Esporte. 2008; doi:10.1590/S1517-86922008000100001
  • 193. Santos F, et al. Atividade física e o estresse oxidativo no processo de envelhecimento. 2009.
  • 194. Monteiro R, et al. Consumo de antioxidantes para práticas de exercícios físicos. Revista Eletrônica Acervo Saúde. 2017.
  • 195. Gonzalez Calvo G, et al. Physical Activity and Free Radicals, Is a Supplementation With Antioxidants Necessary? Rev Int Med Y Ciencias La Act Fis Y Del Deport. 2012.
  • 196. Aguiar-Silva R, et al. Estado antioxidante do sangue como indicador da eficiência do treinamento em nadadores. Rev Bras Ciên e Mov. 2002.
  • 197. De la Cruz E, et al. Micronutrientes antioxidantes y actividad física: evidencias de las necesidades de ingesta a partir de las nuevas tecnologías de evaluación y estudio del estrés oxidativo en el deporte. Retos, Nuevas tendencias en Educ Física, Deport y Reacreación. 2008.
  • 198. Berzosa C, et al. Acute Exercise Increases Plasma Total Antioxidant Status and Antioxidant Enzyme Activities in Untrained Men. J Biomed Biotechnol. 2011; doi:10.1155/2011/540458
  • 199. Gerusa Matias dos Santos, et al. Correlação entre atividade antioxidante e compostos bioativos de polpas comerciais de açaí (Euterpe oleracea Mart). ALAN. 2008.
  • 200. Urso ML, et al. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003; doi:10.1016/S0300-483X(03)00151-3
  • 201. Peake JM, et al. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007; doi:10.1016/j.jnutbio.2006.10.005
  • 202. Johnson EJ. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev. 2014; doi:10.1111/nure.12133.

HIDRATAÇÃO E ENERGIA CELULAR

Refêrencias
  • 1) Benelam B; Wyness L. Hydration and health: a review. Nutr Bull. 2010. Doi:10.1111/j.1467-3010.2009.01795.x
  • 2) Jéquier E; Constant F. Water as an essential nutrient: the physiological basis of hydration. Eur J Clin Nutr. 2010. Doi:10.1038/ejcn.2009.111
  • 3) Popkin BM, et al. Water, hydration, and health. Nutr Rev. 2010. Doi:10.1111/j.1753-4887.2010.00304.x
  • 4) Izak T, et al. Enhanced spontaneous nucleation of diamond nuclei in hot and cold microwave plasma systems. Phys status solidi. 2013. Doi:10.1002/pssb.201300117
  • 5) IOM. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride and Sulfate. Disponível em www.nap.edu/read/10925/chapter/1 Acessado em 26/09/2018
  • 6) Thornton SN. Thirst and hydration: Physiology and consequences of dysfunction. Physiol Behav. 2010. Doi:10.1016/j.physbeh.2010.02.026
  • 7) Chang T, et al. Inadequate Hydration, BMI, and Obesity Among US Adults: NHANES 2009–2012. Annals of Family Medicine; 2016. Doi:10.1370/afm.1951
  • 8) Daniels MC; Popkin BM. Impact of water intake on energy intake and weight status: a systematic review. Nutr Rev. 2010. Doi:10.1111/j.1753-4887.2010.00311.x
  • 9) Boilesen SN, et al. Water and fluid intake in the prevention and treatment of functional constipation in children and adolescents: is there evidence? J Pediatr (Rio J). 2017. Doi:10.1016/j.jped.2017.01.005
  • 10) Valtin H. “Drink at least eight glasses of water a day.” Really? Is there scientific evidence for “8 × 8”? Am J Physiol Integr Comp Physiol. 2002. Doi:10.1152/ajpregu.00365.2002
  • 11) Choi HY, et al. High Water Intake and Progression of Chronic Kidney Diseases. Electrolytes Blood Press. 2015. Doi:10.5049/EBP.2015.13.2.46
  • 12) Armstrong LE, et al. Mild Dehydration Affects Mood in Healthy Young Women. J Nutr. 2012. Doi:10.3945/jn.111.142000
  • 13) Pross N, et al. Influence of progressive fluid restriction on mood and physiological markers of dehydration in women. Br J Nutr. 2013. Doi:10.1017/S0007114512001080
  • 14) El-Sharkawy AM, Sahota O, Lobo DN. Acute and chronic effects of hydration status on health. Nutr Rev. 2015. Doi:10.1093/nutrit/nuv038
  • 15) Benton D, et al. Minor degree of hypohydration adversely influences cognition: a mediator analysis. Am J Clin Nutr. 2016. Doi:10.3945/ajcn.116.132605
  • 16) Watson P, et al. Mild hypohydration increases the frequency of driver errors during a prolonged, monotonous driving task. Physiol Behav. 2015. Doi:10.1016/j.physbeh.2015.04.028.
  • 17) Sepeda TPA, et al. Avaliação Da Perda Hídrica E Hábitos De Hidratação De Atletas Universitários De Futsal Competitivo. Rev Bras Med Do Esporte. 2016. Doi:10.1590/1517-869220162205151956
  • 18) Vechiato T; Costa TNF. Avaliação do Estado de Hidratação e Ingestão Hídrica em Praticantes de Triatlo. RBNE – Rev Bras Nutr Esportiva. 2016
  • 19) “Desidratação e seleção para reposição hídrica em crianças fisicamente ativas.” Disponível em www.scielo.br/pdf/rpp/v28n3/13.pdf
    Acessado em 26/09/2018
  • 20) Sharp G. The Ultimate Guide to Hydration – Why Water is the True Elixir of Life and How You can Stay Hydrated Throughout the Day. Real. Cool. Media. 2014
  • 21) Phillips PA. Reduced osmotic thirst in healthy elderly men. Am J Physiol. 1991
  • 22) Picetti D, et al. Hydration health literacy in the elderly. Nutr Healthy Aging. 2017. Doi:10.3233/NHA-170026
  • 23) Ramón D, et al. Conclusions of the II International and IV Spanish Hydration Congress. Nutr Hosp. 2016. Doi:10.20960/nh.308
  • 24) Gross CR, et al. Clinical indicators of dehydration severity in elderly patients. J Emerg Med. 1992. Doi:10.1016/0736-4679(92)90331-M
  • 25) Miller HJ. Dehydration in the Older Adult. J Gerontol Nurs. 2015. Doi:10.3928/00989134-20150814-02
  • 26) Quattrini S. Natural mineral waters: chemical characteristics and health effects. Clin Cases Miner Bone Metab. 2017. Doi:10.11138/ccmbm/2016.13.3.173
  • 27) Speich M, et al. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta. 2001. Doi:10.1016/S0009-8981(01)00598-8
  • 28) Williams M. Dietary Supplements and Sports Performance: Minerals. J Int Soc Sports Nutr. 2006. Doi:10.1186/1550-2783-3-1-1
  • 29) Hernandez AJ; Nahas RM. Modificações dietéticas, reposição hídrica, suplementos alimentares e drogas: comprovação de ação ergogênica e potenciais riscos para a saúde. Rev Bras Med do Esporte. 2009. Doi:10.1590/S1517-86922009000400001
  • 30) Maynar M, et al. Serum concentration of cobalt, molybdenum and zinc in aerobic, anaerobic and aerobic-anaerobic sportsmen. J Int Soc Sports Nutr. 2018. Doi:10.1186/s12970-018-0233-z
  • 31) “Coconut water is an excellent sports drink.” Disponível em www.sciencedaily.com/releases/2012/08/120820143902.htm Acessado em 26/09/2018
  • 32) Cohen D; Bria Gina. Quench – beat fatigue, drop weight, and heal your body through the new Science of optimum hydration. Hachette Books; 2018
  • 33) “Pollack Laboratory.” Disponível em https://www.pollacklab.org Acessado em 5/10/2018
  • 34) Sims ST. Roar. Rodale Wellness; 2016. “A Few Edible and Useful Desert Plants.” Disponível em
    www.youtube.com/watch?time_continue=137&v=ZSx8UuwmAXg Acessado em 19/09/2018
  • 35) DiNicolantonio J. The Salt Fix – Why the Experts Got it All Wrong and How Eating More Might Save Your Life. Harmony Books; 2017
  • 36) “Synthetic Polymer Contamination In Bottled Water.” Disponível em
    https://orbmedia.org/sites/default/files/FinalBottledWaterReport.pdf Acessado em 26/09/2018
  • 37) “Water Filter Technology.” Disponível em www.ewg.org/tapwater/water-filter-technology.php#.W6hBUhNKj-Y Acessado em 28/09/2018

CÚRCUMA E AÇAFRÃO
Todo o potencial destas duas especiarias reconhecidas pela ciência

Refêrencias
  • 1) Tayyem RF, et al. Curcumin content of turmeric and curry powders. Nutr Cancer; 2006
  • 2) Ferrence, SC; Bendersky, G. Therapy with Saffron and the Goddess at Thera. Perspect Biol Med; 2004
  • 3) Rosengarten Jr; Frederic. The Book of Spices; 1969
  • 4) Rubio-Moraga A, et al. Saffron is a monomorphic species revealed by the RAPD, ISSR and microsatellites analyzes. BMC Res Notes; 2009
  • 5) Liu Y, et al. Physiological and ecological effects of potassium in the expansion of crocus corm. Chin J Appl Ecol; 2004
  • 6) Moraga AR, et al. Glucosylation of apocarotenoid crocetin saffron by glycosyltransferase isolated from Crocus sativus stigmas. Planta; 2004
  • 7) Chaves FCM, et al. Influência do peso de rizomas-semente na produção de açafrão. Congresso Brasileiro de Olericultura; 2011
  • 8) Santiagoa VS, et al. Curcumina, o pó dourado do açafrão-da-terra: introspecções sobre química e atividades biológicas. Quimica Nova; 2015. Doi: 10.5935/0100-4042.20150035
  • 9) D’Agostino N, et al. An EST database of saffron stigmas. BMC Plant Biol; 2007
  • 10) Zhou H, et al. The Targets of Curcumin. Journal Current Drug Targets; 2011. Doi:10.2174/138945011794815356
  • 11) Yi-Sun Yang, et al. Phytoth Res; 2014
  • 12) Scholze AFA. Biodisponibilidade da Curcumina. Revista Brasileira de Nutrição Clínica Funcional; 2014
  • 13) Sharma, et al. Comparison of Curcumin Content of some Turmeric Samples Collected from Different Places of Northeast India European. Journal of Biomedical and Pharmaceutical Sciences; 2016
  • 14) Shoba G, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med; 1998
  • 15) Pianpumepong P, et al. Study on enhanced absorption of phenolic compounds of Lactobacillus‐fermented turmeric (Curcuma longa Linn.) beverages in rats. International Journal of Food Science Technology; 2012. Doi:10.1111/j.1365-2621.2012.03113
  • 16) Jäger R, et al. Comparative absorption of curcumin formulations.  Nutrition Journal; 2014. Doi:10.1186/1475-2891-13-11
  • 17) Srinivasan K.  Black Pepper and its Pungent Principle-Piperine: A Review of Diverse Physiological Effects. Journal Critical Reviews in Food Science and Nutrition; 2007. Doi: 10.1080/10408390601062054
  • 18) Liu W, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target; 2016. Doi:10.3109/1061186X.2016.1157883
  • 19) Aggarwal BB, et al. Adv Exp Med Biol; 2007
  • 20) Dhar A, et al. Molecular basis of protective effect by crocetin on survival and liver tissue damage after hemorrhagic shock. Mol Cell Biochem; 2005
  • 21) Xi L, et al. Impacto benéfico da crocetina, um carotenóide do açafrão, na sensibilidade à insulina em ratos alimentados com frutose. J Nutr.Biochem; 2007.
  • 22) Disponível em: www.themodernantiquarian.com/site/10854/knossos.html#fieldnotes Acessado em 30/08/2018
  • 23) Aytekin A; Acikgoz AO. Hormônio e microrganismos no cultivo de plantas de açafrão (Crocus sativus L.). Moléculas; 2008
  • 24) Himeno H; Sano K. Synthesis of Crocin, Picrocrocin and Safranal by Saffron Stigma-like Structures Proliferated in Vitro. Agricultural and Biological Chemistry; 1987. Doi:10.1080/00021369.1987.10868396
  • 25) Akhondzadeh S, et al. Comparison of Crocus sativus L. and imipramine in the treatment of mild depression: A randomized double-blind pilot study. Complement BMC Altern Med; 2004
  • 26) Akhondzadeh S, et al. Crocus sativus L. in the treatment of mild to moderate depression: a double-blind, randomized, placebo-controlled study. Phytother Res; 2005
  • 27) Agha-Hosseini M, et al. Crocus sativus L. (saffron) in the treatment of premenstrual syndrome: a double-blind, randomized, placebo-controlled study. International Journal of Obstetrics & Gynaecology; 2008
  • 28) Nahid K, et al. The effect of an Iranian herbal drug on primary dysmenorrhoea: a controlled clinical trial. J Midwifery Womens Health; 2009
  • 29) Akhondzadeh S, et al. A controlled, double-blind, multicenter, randomized, 22-week study of Crocus sativus in the treatment of mild to moderate Alzheimer’s disease. Psychopharmacology; 2010
  • 30) Khorasany AR, et al. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iran J Basic Med Sci; 2016
  • 31) Rasyid A; Lelo A. The effect of curcumin and placebo on human gall-bladder function: an ultrasound study. Aliment Pharmacol Ther; 1999
  • 32) Mei X, et al. Pharmacological researches of curcumin solid dispersions on experimental gastric ulcer. Zhongguo Zhong Yao Za Zhi; 2009
  • 33) Tuorkey M; Karolin K. Anti-ulcer activity of curcumin on experimental gastric ulcer in rats and its effect on oxidative stress/antioxidant, IL-6 and enzyme activities. Biomed Environ Sci; 2009. Doi:10.1016/S0895-3988(10)60006-2
  • 34) Rai B, et al. Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress. J Oral Sci; 2010
  • 35) Zaman MS, et al. Curcumin Nanoformulation for Cervical Cancer Treatment. Sci Rep. 2016. Doi:10.1038/srep20051
  • 36) Bharat BA, et al. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol; 2013. Doi:10.1111/bph.12131
  • 37) Carr KR, et al. Combined ultrasound-curcumin treatment of human cervical cancer cells. Eur J Obstet Gynecol Reprod Biol; 2015. Doi: 10.1016/j.ejogrb.2015.07.011
  • 38) Chakravarti N, et al. Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells. Cancer Prev Res(Phila); 2010. Doi:10.1158/1940-6207.CAPR-09-0076
  • 39) Bayet-Robert M, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther; 2010
  • 40) Angelo LS; Kurzrock R. Turmeric and green tea: a recipe for B-Chronic Lymphocytic Leukemia. Clin Cancer Res; 2009. Doi:10.1158/1078-0432.CCR-08-2791
  • 41) Kong Y, et al. Cytotoxic activity of curcumin towards CCRF-CEM leukemia cells and its effect on DNA damage. Molecules; 2009. Doi:10.3390/molecules14125328
  • 42) Wu SH, et al. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways. Anticancer Res; 2010
  • 43) Shenouda NS, et al. Phytoestrogens in common herbs regulate prostate cancer cell growth in vitro. Nutr Cancer; 2004.
  • 44) Sordillo LA, et al. Curcumin for the Treatment of Glioblastoma. Anticancer Res; 2015
  • 45) Luthra PM; Lal N. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur J Med Chem; 2016. Doi:10.1016/j.ejmech.2015.11.049
  • 46) Thaloor D, et al. Systemicadministration of the NF-kappaB inhibitor curcumin stimulates muscle regeneration after traumatic injury. Am J Physiol; 1999
  • 47) Belcaro G, et al. Efficacy and safety of Meriva®, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients. Altern Med Rev; 2010
  • 48) Appelboom T, et al. A new curcuma extract (flexofytol®) inosteoarthritis: results from a belgian real-life experience. Open Rheumatol J; 2014. Doi:10.2174/1874312901408010077
  • 49) Wei Yu, et al. Curcumin Alleviates Diabetic Cardiomyopathy in Experimental Diabetic Rats. PLoS One; 2012. Doi:10.1371/journal.pone.0052013
  • 50) Zhang D, et al. Curcumin and Diabetes: A Systematic Review. Evid Based Complement Alternat Med; 2013. Doi:10.1155/2013/636053
  • 51) Prasad S; Aggarwal BB. Turmeric, the Golden Spice. Traditional Medicine to Modern Medicine Herbal Medicine: Biomolecular and Clinical Aspects; 2011
  • 52) Rivera-Espinoza Y; Muriel P. Pharmacological actions of curcumin in liver diseases or damage. Liver Int.; 2009. Doi:10.1111/j.1478-3231.2009.02086.x
  • 53) Nanji AA, et al. Activation of nuclear factor kappa B and cytokine imbalance inexperimental alcoholic liver disease in the rat. Hepatology; 1999
  • 54) Nabavi SF, et al. Curcumin and Liver Disease: from Chemistry to Medicine. Food Science and Food Safety; 2013. Doi:10.1111/1541-4337.12047
  • 55) Varatharajalu R, et al. Protective Role of Dietary Curcumin in the Prevention of the Oxidative Stress Induced by Chronic Alcohol with respect to Hepatic Injury and Antiatherogenic Markers. Oxid Med Cell Longev; 2016. Doi: 10.1155/2016/5017460
  • 56) Rameshrad M, et al. Saffron and its derivatives, crocin, crocetin and safranal: a patent review. Journal Expert Opinion on Therapeutic Patents; 2018. Doi:10.1080/13543776.2017.1355909
  • 57) Sheng L, et al. Crocetin improves insulin resistance induced by high-fat diet in rats. Br.J Pharmacol; 2008.
  • 58) El-Agamy DS. Comparative effects of curcumin and resveratrol on aflatoxin B(1)-induced liver injury in rats. Arch Toxicol; 2010. Doi:10.1007/s00204-010-0511-2
  • 59) Bright JJ. Curcumin and autoimmune disease. Adv Exp Med Biol; 2007
  • 60) Kim K, et al. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett; 2010. Doi:10.1016/j.febslet.2009.12.019
  • 61) Bansal S; Chhibber S. Curcumin alone and in combination with augmentin protects against pulmonary inflammation and acute lung injury generated during Klebsiella pneumoniae B5055-induced lung infection in BALB/c mice. J Med Microbiol; 2010. Doi:10.1099/jmm.0.016873-0
  • 62) Chuengsamarn S, et al. Curcumin extract for prevention of type 2 diabetes. Diabetes Care; 2012. Doi:10.2337/dc12-0116
  • 63) Biswas SK, et al. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal; 2005
  • 64) Menon VP; Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol; 2007
  • 65) Meng L; Cui L. Inhibitory effects of crocetin on high glucose-induced apoptosis in cultured human umbilical cell endothelial cells and its mechanism. Arch Pharm Res; 2008
  • 66) Verma SK; Bordia A. Antioxidant property of saffron in man. Indian J Med.Sci; 1998
  • 67) Agarwal R, et al. Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. Journal of Applied Toxicology; 2010. Doi:10.1002/jat.1517
  • 68) Sikora E, et al. The promise of slow down ageing may come from curcumin. Curr Pharm Des; 2010
  • 69) Wu A, et al. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol; 2006
  • 70) Singh S; Kumar P. Neuroprotective Activity of Curcumin in Combination with Piperine against Quinolinic Acid Induced Neurodegeneration in Rats. Pharmacology; 2016. Doi:10.1159/000443896
  • 71) Xu Y, et al. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res; 2006
  • 72) Al-Karawi D, et al. The Role of Curcumin Administration in Patients with Major Depressive Disorder: Mini Meta-Analysis of Clinical Trials. Phytother Res; 2016. Doi:10.1002/ptr.5524
  • 73) Cox KH, et al. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol; 2015. Doi:10.1177/0269881114552744
  • 74) Kim SJ, et al. Curcumin Stimulates Proliferation of Embryonic Neural Progenitor Cells and Neurogenesis in the Adult Hippocampus. J Biol Chem; 2008. Doi:10.1074/jbc.M708373200
  • 75) Zhang ZY, et al. Enhanced Therapeutic Potential of Nano-Curcumin Against Subarachnoid Hemorrhage-Induced Blood-Brain Barrier Disruption Through Inhibition of Inflammatory Response and Oxidative Stress. Mol Neurobiol; 2017. Doi:10.1007/s12035-015-9635-y
  • 76) Wu A, et al. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. Biochim Biophys Acta; 2015. Doi:10.1016/j.bbadis.2014.12.005
  • 77) Li W, et al. Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral. Microvasc Res; 2016. Doi:10.1016/j.mvr.2015.12.008
  • 78) Manikandan R, et al. Curcumin prevents free radical-mediated cataractogenesis through modulations in lens calcium. Free Radic Biol Med; 2010. Doi:10.1016/j.freeradbiomed.2009.11.011
  • 79) Chen M, et al. Curcumin protects against hyperosmoticity-induced IL-1beta elevation in human corneal epithelial cell via MAPK pathways. Exp Eye Res; 2010. Doi:10.1016/j.exer.2009.12.004
  • 80) Charitra NG, et al. Efficacy of Biodegradable Curcumin Nanoparticles in Delaying Cataract in Diabetic Rat Model. PLoS One; 2013. Doi:10.1371/journal.pone.0078217
  • 81) Di Pierro F, et al. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Eur Rev Med Pharmacol Sci; 2015
  • 82) Li JM, et al. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis infructose-fed rats. Hepatology; 2010. Doi:10.1002/hep.23524
  • 83) Ahn J, et al. Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling. Am J Physiol Cell Physiol; 2010. Doi:10.1152/ajpcell.00369.2009
  • 84) Lee YK, et al. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem; 2009. Doi:10.1021/jf802737z
  • 85) Kheradpezhouh E, et al. Curcumin protects rats against acetaminophen-induced hepatorenal damages and shows synergistic activity with N-acetyl cysteine. Eur J Pharmacol; 2010. Doi:10.1016/j.ejphar.2009.11.027
  • 86) Katanasaka Y, et al. Application of curcumin to heart failure therapy by targeting transcriptional pathway in cardiomyocytes. Biol Pharm Bull; 2013
  • 87) Morimoto T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest; 2008
  • 88) Sunagawa Y, et al. A natural p300-specific histone acetyltransferase inhibitor, curcumin, in addition to angiotensin-converting enzyme inhibitor, exerts beneficial effects on left ventricular systolic function after myocardial infarction in rats. Circ J; 2011
  • 89) Hosseinzadeh H; Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Phytotherapy; 2005
  • 90) Hosseinzadeh H,et al. Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline; 2007
  • 91) Ghasemi T, et al. Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF transcript and protein levels in rat hippocampus. Drug Res; 2015
  • 92) Vahdati Hassani F, et al. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. J Pharm Sci; 2014
  • 93) Hosseinzadeh H, et al. Antidepressant effect of stigma extracts of Crocus sativus L. and its constituents, crocin and safranal, in mice. Acta Hortic; 2004
  • 94) Al-Karawi D, et al. The Role of Curcumin Administration in Patients with Major Depressive Disorder: Mini Meta-Analysis of Clinical Trials. Phytother Res; 2016. Doi: 10.1002/ptr.5524
  • 95) Sanmukhani J, et al. Efficacy and Safety of Curcumin in Major Depressive Disorder: A Randomized Controlled Trial. Phytother Res; 2013
  • 96) Yu JJ, et al. Chronic Supplementation of Curcumin Enhances the Efficacy of Antidepressants in Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. J Clin Psychopharmacol; 2015
  • 97) Lopresti LA, et al. Curcumin for the treatment of major depression: a randomised, double-blind, placebo controlled study. J Affect Disord; 2014
  • 98) Talaei A, et al. Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: a randomized, double-blind, placebo-controlled, pilot clinical trial. J Affect Disord; 2015
  • 99) Shahmansouri N, et al. A randomized, double-blind, clinical trial comparing the efficacy and safety of Crocus sativus L. with fluoxetine for improving mild to moderate depression in post percutaneous coronary intervention patients. J Affect Disord; 2014
  • 100) Akhondzadeh S, et al. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: a pilot double-blind randomized trial [ISRCTN45683816]. BMC Complement Altern Med; 2004
  • 101) Hausenblas HA, et al. Saffron (Crocus sativus L.) and major depressive disorder: a meta-analysis of randomized clinical trials. J Integr Med; 2013
  • 102) Zheng YQ, et al. Effects of crocine on reperfusion-induced oxidative / nitrative injury in cerebral microvessels after global cerebral ischemia. Brain Res; 2007
  • 103) Mousavi SH, et al. Protective effect of crocus and turmeric extract on high glucose-mediated toxicity mediated by reactive oxygen species in cells PC12. Cell Mol.Neurobiol; 2010
  • 104) Soeda S, et al. Crocin suprimem a morte celular induzida por factor de necrose tumoral alfa de células PC-12 neuronalmente diferenciadas. Life Sci; 2001
  • 105) Ochiai T, et al. Crocin prevents the death of PC-12 cells via sphingomyelinase-ceramide signaling, increasing the synthesis of glutathione. Neurochem. Int; 2004
  • 106) Mehri S, et al. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol, 2012
  • 107) Pitsikas N, et al. Effects of the active constituents of Crocus sativus L., crocines on the recognition and spatial memory of rats. Behav.Brain Res; 2007
  • 108) Pitsikas N; Sakellaridis N. Crocus sativus L. antagonize memory compromises in different behavioral tasks in the rat. Behav. Brain Res; 2006
  • 109) Hosseinzadeh H. Saffron: a herbal medicine of third millennium. J Nat Pharm Prod; 2014.
  • 110) Tashakori-Sabzevar F, et al. Crocetin attenuates spatial learning dysfunction and hippocampal injury in a model of vascular dementia. Curr Neurovasc Res; 2013
  • 111) Hosseinzadeh H; Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res; 2009
  • 112) Hosseinzadeh H, et al. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res; 2012
  • 113) Aggarwal BB, et al. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. J Biochem Cell Biol; 2009
  • 114) Pitsikas N, et al. Effects of the active constituents of Crocus sativus L., crocins, on an animal model of anxiety. Phytomedicine; 2008
  • 115) Boskabady MH ; Aslani MR. Relaxing of Crocus sativus (saffron) on guinea pig tracheal chains and their possible mechanisms. J Pharm Pharmacol; 2006
  • 116) Blumenthal M. The complete monographs of the German Commission E: Therapeutic guide for herbal medicines. American Botanical Council; 1998
  • 117) Nemati H, et al. Stimulating effect of Crocus sativus (saffron) on beta2 adrenoceptors of guinea pig tracheal chains. Phytomedicine; 2008
  • 118) Akhondzadeh S, et al. A controlled, double-blind, multicenter, randomized, 22-week, Crocus sativus study in the treatment of mild to moderate Alzheimer’s disease. Psychopharmacology; 2010
  • 119) Shishodia S, et al. Curcumin: getting back to the roots. Acad Sci; 2005
  • 120) Hosseinzadeh H; Jahanian Z. Effect of Crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother Res; 2010
  • 121) Mehdizadeh R, et al. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci; 2013
  • 122) Razavi BM, et al. Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem-Biol Interact; 2013
  • 123) He SY, et al. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci; 2005.
  • 124) Razavi M, et al. Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iran J Basic Med Sci; 2013
  • 125) Sheng L, et al. Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol; 2006
  • 126) Wang CJ, et al. Suppression of hepatotoxic lesions induced by aflatoxin B1 by crocetin (a natural carotenoid). Carcinogenesis; 1991
  • 127) Hariri AT, et al. The effect of crocin and safranal, constituents of saffron, against subacute effect of diazinon on hematological and genotoxicity indices in rats. Phytomedicine; 2011
  • 128) Xi L, et al. Crocetin attenuates palmitate-induced insulin insensitivity and disordered tumor necrosis factor-α and adiponectin expression in rat adipocytes. Br.J Pharmacol; 2007
  • 129) Hosseinzadeh H; Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol; 2002
  • 130) Nair SC, et al. Protective effects of crocetin on cyclophosphamide-induced bladder toxicity. Cancer Biother; 1993.
  • 131) Schmidt M, et al. Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr; 2007.
  • 132) Hosseinzadeh H, et al. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine; 2008
  • 133) Moshiri M et al. Clinical Applications of Saffron (Crocus sativus) and its Constituents: A Review. Drug Res (Stuttg); 2015.
  • 134) Alavizadeh SH; Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol; 2014
  • 135) Xiang M, et al. Crocetin prevents APE-induced vascular endothelial cell apoptosis. Pharmacol Res; 2006.
  • 136) Maccarone R, et al. The saffron supplement maintains morphology and function after exposure to harmful light in the retina of mammals. Invest Ophthalmol.Vis.Sci; 2008
  • 137) Xuan B, et al. Effects of crocin analogs on ocular blood flow and retinal function. J Ocul.Pharmacol Ther; 1999
  • 138) Laabich A, et al. Protective effect of crocine against the death of photoreceptor cells mediated by white light and blue light in culture of primary cells of retina of bovines and primates. Invest Ophthalmol.Vis.Sci; 2006
  • 139) Kanofsky JR, et al. Reagent derived from PD Girard P beta-Apo-8′-carotenal derivative: a potent photoprotective agent.  Photochem. Photobiol; 2001
  • 140) Gout B, et al. Satiereal, a Crocus sativus L extract, reduces snacking and increases satiety in randomized placebo-controlled study of mildly overweight, healthy women. Nutrition Research Journal; 2010. Doi:10.1016/j.nutres.2010.04.008
  • 141) Escribano J, et al. The cytolytic effect of a glycoconjugate extracted from saffron plant corms (Crocus sativus) on human cell lines in culture. Planta Med; 2000
  • 142) Escribano J, et al. Production of a cytotoxic proteoglycan using corns of saffron (Crocus sativus L.). J Biotechnol; 1999.
  • 143) Nair SC, et al. Modulatory effects of Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in mice. J Ethnopharmacol; 1991
  • 144) Escribano J, et al. Crocin, safranal and picrocrocin from crocus (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett; 1996
  • 145) Abdullaev FI; Gonzalez M. Inhibition of the formation of colonies of HeLa cells by natural and synthetic agents. Biofactors; 1995
  • 146) Aung HH, et al. Crocus of Crocus sativus has significant antiproliferative effects on human colorectal cancer cells. Exp.Oncol; 2007
  • 147) Chryssanthi DG, et al. Inhibition of proliferation of breast cancer cells by style constituents of different Crocus species. Anticancer Res; 2007
  • 148) Kanakis CD, et al. DNA interaction with the secondary metabolites of safranal saffron, crocetin and dimethylcrocetin. DNA Cell Biol; 2007
  • 149) Bathaie SZ, et al. Carotenoid interaction of saffron as anticancer compounds with ctDNA, Oligo (dG.dC) 15 and Oligo (dA.dT) 15. DNA Cell Biol; 2007
  • 150) Lone J, et al. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary White adipocytes. The Journal of Nutritional Biochemistry; 2016. Doi:10.1016/j.jnutbio.2015.09.006
  • 151) Zhu L, et al. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol Med Rep. 2015. Doi:10.3892/mmr.2015.3450
  • 152) Ejaz A, et al. Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesity in C57/BL Mice. Journal of Nutrition. 2009
  • 153) Mantzorou M, et al. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother Res; 2018. Doi:10.1002/ptr.6037
  • 154) Nan B, et al. C-reactive protein decreases expression of thrombomodulin and endothelial protein C receptor in human endothelial cells. Surgery. 2005. Doi:10.1016/j.surg.2005.06.003
  • 155) Chen C, et al. C-reactive protein increases plasminogen activator inhibitor-1 expression in human endothelial cells. Thromb Res. 2008
Postado 07/07/2020  |  Atualizado 27/07/2020  |  Tempo de leitura 58 min
Botão para acessar o whats app